
Scaling Engineering @ PYT
Vinayak - VP of Engg
Mar 2020



2

● Introduction
● PYT Architecture & Tools
● How Tech Evolved
● Challenges & Solutions
● Next Steps

Agenda



3
Introduction

● Worked with Fortune 500 companies like MSFT, MS to startups like 
ZoomIn (Head of Engineering) and now Pickyourtrail

● Enjoy Solving problems
● Scale Engineering with tools & processes
● Certified Heartfulness Meditation Coach - 4+ years



4
PYT Architecture & Tools



5
Production Setup

Internet ALB Listeners (80 & 443)

Target Groups

BE 1

BE 2

BE n

FE 1

FE 2

FE n



6

● 12 devs, 2 QA members
● Sprints got just started
● Requirements were missed
● Code merge/push issues
● Spent more time on fixing bugs (Less time on features)
● Untested code
● Test cases were evolving
● No differentiation between Regression and New Issue
● 3-5 builds per week

How Tech Evolved - beginning



7

● On the ground
● Root cause issues
● Understood the challenges
● Started to track bugs more rigorously
● Adhere to scope

How Tech Evolved - Figure Why?



8

What we found?



9
Code Quality



10

Peer review – an activity in which people other than the author of a software deliverable 
examine it for defects and improvement opportunities – is one of the most powerful 
software quality tools available. Peer review methods include inspections, 
walkthroughs, peer deskchecks, and other similar activities. After experiencing the 
benefits of peer reviews for nearly fifteen years, I would never work in a team that did 
not perform them. - Karl Wiegers

… software testing alone has limited effectiveness – the average defect detection rate is 
only 25 percent for unit testing, 35 percent for function testing, and 45 percent for 
integration testing. In contrast, the average effectiveness of design and code 
inspections are 55 and 60 percent. Case studies of review results have been 
impressive: - McConell

How Tech Evolved - Code Quality 



11

● Open Source PR model
● Developers create branches on their forks
● Create a branch on central and raise a PR
● PR is reviewed and closed
● Code is tested
● Deployed to live

How Tech Evolved - Code Branching 



12
How Tech Evolved - Code Branching



13

● Don’t skip code reviews — your team will be less productive if you do. 
Also, review code before deployment — not after.

● Make sure all of your developers get to review code from time to time, 
as this will make them feel empowered and improve their skills.

● Make sure your developers spend half a day to one day per week 
reviewing code — this is the sweet spot for time spent versus high code 
quality.

● Make code reviews blocking and don’t deploy before they have been 
carried out.

● Be strict and thorough while reviewing code — your code quality and 
velocity will thank you.

How Tech Evolved - Code Review



14
It worked



15
Did it scale?



16

● Team grew 3x
● Code Reviews - became slow
● Code was getting missed
● Not enough environments to test
● Regression took 6 hours

Challenges



17

● Automate deployments - ~20-25 builds per week
● Automation to check code misses
● QA Automation

○ Sanity
○ Regression
○ Url validations

● Automate environments
● Run regression
● Page speed automation

Solutions



18
Pagespeed



19

● Immutable Infra
● More automation
● Improve CI and leverage CD
● Better Tech Debt Management
● More unit tests coverage
● Api Automation
● Mobile App Automation
● N+1 model

Next Steps



20
Next Steps



21
Next Steps



22

● https://medium.com/clarifai-champions/99-pr-oblems-a-beginners-guide-to-open-source-abc1b867385a

● https://paulhammant.com/2013/04/05/what-is-trunk-based-development/

● https://blog.logrocket.com/the-git-workflow-you-need-how-to-deal-with-multiple-teams-in-a-single-repository-faf5

bb17a6e4/

● https://martinfowler.com/articles/itsNotJustStandingUp.html

● https://www.codacy.com/ebooks/guide-to-code-reviews-II

● https://medium.com/@adhorn/immutable-infrastructure-21f6613e7a23

References

https://medium.com/clarifai-champions/99-pr-oblems-a-beginners-guide-to-open-source-abc1b867385a
https://paulhammant.com/2013/04/05/what-is-trunk-based-development/
https://blog.logrocket.com/the-git-workflow-you-need-how-to-deal-with-multiple-teams-in-a-single-repository-faf5bb17a6e4/
https://blog.logrocket.com/the-git-workflow-you-need-how-to-deal-with-multiple-teams-in-a-single-repository-faf5bb17a6e4/
https://martinfowler.com/articles/itsNotJustStandingUp.html
https://www.codacy.com/ebooks/guide-to-code-reviews-II
https://medium.com/@adhorn/immutable-infrastructure-21f6613e7a23


23

Thanks!


